
الاختبار الأول لمادة العلوم الطبيعية

العلوم الطبيعية السمدة: ساعتان التمرين الأول:

لدر اسة البنية الأولية لأنسولين الثو والحصان والخنزير أنجزت التجارب التالية – أخذت خلايا بنكرياسية للثور والحصان والخنزير ووضعت كل منها في وسط مغذ به (U)

الخلايا بتقنية التصوير الإ لنتائج المحصل عليها ممثلة في الوثيقة 1

- $_{1}$ فسر ظهور الإشعاع مبينا طبيعة الجزيئات المشعة $_{1}$
- 2 ماذا يمكن استخلاصه حول دور هذه الجزيئات المشعة,
- 3 4 على نفس نتائج التجربة السابقة لو استعملنا التيامدين المشع بدل الفسفور 2 4
- بينت دراسة بنية الجزيئات المشعة المستخلصة من الخلاي البنكرياسية لكل حيوان النتائج الممثلة في جدول الوثيقة 2

	-7-2-41								
	زير	الخنز		صان	الح	الثور			الوثيقة 2
S ACA	9 GGU 111	10 AUC	S ACU	9 UCU 111	10 AUU LIL	gcu 	9 UCA	10 GUU III	بنية جزء من الجزيئة المشعة

ACA : Thr	ACU : Thr	GCU Ala
GGU : GJy	UCU : Ser	UCA Ser
AUC:Ib	AUU:Ile	CUU : Yal

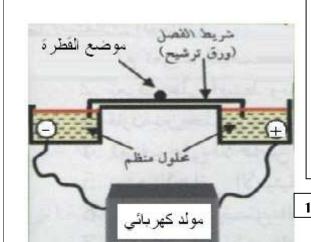
الوراثي

الأقسام: 3 ع ت ج

1 – الأمينية (8 9 10) جدول الشفرة الوراثية المر

-2

ظهور هذه القطع من الأنسولين


- 3 ما هي المعلومة المستخلصة من هذه الدراسة
- 4 هل الجزيئات المختلفة لها تأثير على وظيفة الأنسولين؟
 - 5 اقترح فرضية تفسر بها هذه الاشكالية؟

التمرين الثاني

بروتين زلال البيض على مستوى جهاز الفصل الكهربائي وضعت ق

1= PH كما هو ممثل في الوثيقة 1

ترشيح

كررت التجربة باستعمال محاليل ذات ذرجات PH

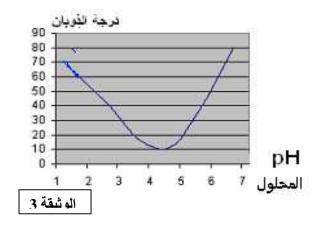
يض نحو القطب الموجب أو السالب للمجال الكهر ليض نحو القطب الموجد في جدول الوثيقة 2

الوثيقة 1

	08	07	06	05	04.6	04	03	02	01		PH
+0	9.75	+07.7	+05	+0.75	00	- 3.75	- 7.5	- 9.5	-10	Cm	

الوثيقة 2

PH ارسم المنحنى البياني الممثل لتغيرات مسافة نحرك بروتين زلال البيض بدلالة -1


2 - حلل المنحنى البياني الناتج

2 – يمة PHi بروتين زلال البيض

 $8 = PH \ 2 = PH \ [NH_2 - Pro - COOH]$ مثل جزيئة بروتين ل البيض باستعمال الصيغة التالية

5 - استنتج الخاصية المميزة للبروتين

بيض في أنابيب اختبار بها محاليل مختلفة من الـ PH ، وعن طريق قياس درجة ذوبان محلول زلال البيض في الوشيقة 3 البيض في الوسط ،

1 – حلل المنحنى و ماذا يمثل ؟

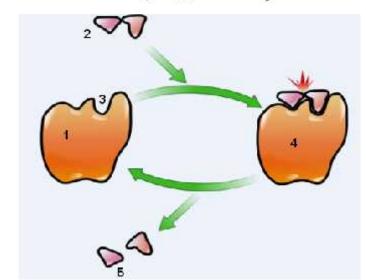
PHi عند البروتين عند 2 البيض من المنحنى ? ماذا تمثل هذه النتيجة ?

3 - فسر النتيجة

التمرين الثالث:

- يقوم إنزيم الغلوكوكيناز بتحفيز التفاعل الحيوي التالي

D - غلوكوز + ATP - غلوكوز 6 - فوسفات + ADP


1 – حدد طبيعة التفاعل الذي ينشطه الإنزيم الغلوكوكيناز

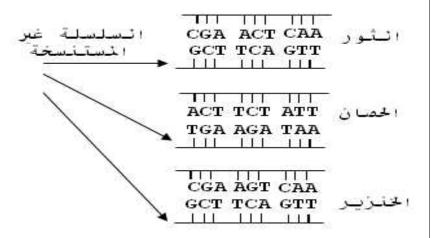
: - L - D -2

(يمكن حساب السرعة بتقنية مناسبة) ولم نجد في الوسط L - δ .

- كيف تفسر هذه النتيجة ؟
- وضح الخاصية المميزة لانزيم جلوكوكيناز.
- تمثل الوثيقة شكلا تخطيطيا لأحد التفاعلات الإنزيمية
 - 1 البيانات اللازمة
- 2 حدد الدعامة الكيميائية التي تحقق التفاعل الإنزيمي باستبدال الحروف بالأرقام

E + S ← FS ← P + E

- على ضوء در استك لموضوع الإنزيمات وما توصلت إليه من نتائج اكتب نصا علمي مختصرا تلخص فيه المعلومات التالية
 - * مفهوم الإنزيم
 - * علاقة الإنزيم بمادة التفاعل و وبنيته
 - * العوامل المؤثرة في نشاط الإنزيم


انت

الإجابة النموذجية لتمارين الفصل الأول

اختبار مادة: العلوم الطبيعية ... الشعبة : علوم تجريبية المدة : ساعتان

/ 1 - تفسير ظهور الإشعاع	تمرین
ان الفسفور المشع بدخل في تركيب النيكليوتيدات المشكلة للـ ARN	الأول
فظهور الإشعاع داخل النواة يدل على تشكل الـ ARN ستواها	
5	
وانتقال الإشعاع إلى الهيولي بعد 12 ساعة يدل على انتقال الـ ARN	
المصنع من النواة إلى الهيولي	
- فطبيعة الجزيئات المشعة هي من النوع (ARNm)	
2 – الاستخلاص حول دور الجزيئات المشعة	
(ARNm) في النواة لينتقل إلى الهيولي	
حاملا المعلومة الوراثية بشكل شفرة وراثية (رامزات) لتترجم على مستواها	
إلى بروتين معين	
3 – لا نحصل على نفس النتائج باستعمال التيامدين المشع	
التعليل: التيمدين المشع يدخل في تركيب الـ ADN يبقى داخل النواة	
و لا ينتقل إلى الهيولي (ARNm لا يحتوي على القاعدة التيمين T)	
/ 1 - سلسلة الأحماض الأمينية (8 9 10) لكل من أنسولين الثور ، الحصان ، الخنزير	
كما هو في الجدول التالي	
مصدر الأنسولين الأحماض الأميتية	
8 - 9 - 10	
8 9 10 GCU UCA GUU	
Val - Ser - Ala	
ACU UCU AUU	
Thr – Ser - Ile	
الخنزير 10 8 8 ACA GGU AUC	
Ile - Thr - Gly	

2 - أجزاء المورثات المسئولة على ظهور القطع الأنسوليتية

3 - المعلومة المستخلصة من هذه الدراسة

تختلف الجزيئات البروتينية باختلاف نوع المورثات التي تشرف عليها

(كل مورثة تشرف على اصطناع بروتين معين)

4 - وظيفة الأنسولين هي التأثير على خلايا مستهدفة معينة عن طريق م

نوعية مما يسمح بتخفيض نسبة السكر في الدم

رعم اختلاف أنواع الأنسولين فإنه يؤدي نفس الوظيفة

الفرضية المقترحة: ثبات الموقع الفعال للجزيئة مما بسمح بالتثبيت على المستقبلات التوعية للخلابا المستهدفة

رسم المنحنى البياني: لتغيرات مسافة تحرك زلال البيض بدلالة درجة حموضة الوسط

التمرين الثاني

	ہ_(سم)	المساك								
+	10									(4)
1	8							93	سرمعرر	,
+	6									
+	4						J. C.			
1	2				805	1				
	0	1	2	3	4.6 4 /	5	6	7	8	₽Ħ الم_سط ➡
-	2									
2	4				1					
=	6									
ē	8		John State S	-						
-	10	em ²	0.00							

2 - تحليل المنحنى الناتج:

يمثل المنحنى البياني تغيرات المسافة لتحرك البروتين(ز لال البيض) في المجال الكهربائي بدلالة PH

```
[1 - 4.6] يتحرك البروتين نحو القطب
                                                      PH
                          السالب للمجال الكهربائي (عدد الشحنات + > -)
 [4.6 - 8] يتحرك البروتين نحو القطب الموجب
                                 للمجال الكهربائي(عدد الشحنات - > + )
                          = 4.6 يبقى البروتين
0 =
                                                     PH
         يلاحظ وجود تناسب طردي بين درجة الحموضة والمسافة المقطوعة
                       1 = pH و البيض في المحلول ذو pH
     ( اکتساب بروتون \rightarrow سلوك قاعدة ) NH_3^+ - Pro - COOH
                       - تمثيل زلال البيض في المحلول ذو pH = 8
              - NH2 - Pro - COO مسلوك حمض ) NH2 - Pro - COO
                               4 - استنتاج قيمة PHi لمحلول زلال البيض:
       هي القيمة التي يتواجد عندها المحلول متعادلا كهربائيا (عدد الشحنات الموجبة =
                                                                     III
                                   الشحنات السالبة) ولا يتحرك البروتين عندها
                                                                        5
                                   PHi لبروتين زلال البيض = 4.6
               5 – الخاصية التي نبر زها هذه الدراسة هي الخاصية الحمقلية
                   تسكك البروتينات سلوك قاعدة في الوسط الحمضي (
    (
      - تحليل المنحنى: يمكن تجزئة المنحنى إلى ثلاثة أجزاء
                      [4.6 - 3]
                                                 pН
                    يلاحظ تناقص تدريجي لدرجة ذوبان البروتين بار
        pН
= 4.6 تصل درجة ذوبان البروتين إلى أدنى قيمة لها
                                             рH
                       [6-4.6]
                                                 pН
                 يلاحظ زيادة لدرجة ذوبان البروتين بارتفاع درجة PH
          0.1 = 0.1 قيمة درجة ذوبان البروتين عند نقطة التعادل الكهربا
                                                 أي تقريا 10%
    3 – تفسير الملاحظة: تفسر القيمة الدنيا لدرجة ذوبان البروتين عند pH
                الذي يكون مساويا لدرجة pHi زلال البيض = 4.6
pH الوسط قريبة من قيمة pHi البروتين تقل نسبة الذوبان
                   جة الترسيب والتي تبلغ عندها قيمة عظمي
                                فترسيب البروتين يعيق عملية الذوبان
                                     الخاصية التي تبينها هذه التجربة:
```

(يتوقف نشاط الإنزيمات في الأوساط القريبة من pHi الخاص بها)

الذي بنشطه الإنزيم -1

استهلاك جزيئة من الـ ATP ، فالتفاعل هو تفاعل فسفرة

2 - : تفسير النتيجة : لايمكن لإنزيم جلوكوكبناز تحفيز

ا - فركتوز لأن تأثير الإنزيمات نوعي $oldsymbol{L}$

(يجب توفير إنزيم فركتوكيناز لتحقيق التفاعل)

: توضيح الخاصية المميزة لإنزيم جلوكوكيناز:

التأثير النوعي للإنزيم يرجع إلى التكامل البنيوي بين الإنزيم ومادة التفاعل التي بختص بها حيث تنشأ رابطة مؤقتتة بين مادة التفاعل والإنزيم لتشكيل معقد ويسمى هذا بالتفاعل المحفز

/ 1 – البيانات المرقمة

-3 (الركيزة) -3 النوعي -2 مادة التفاعل (الركيزة)

4 – المعقد (إنزيم –) 5 –

2 - تحديد الدعامة الكيميائية للتفاعل باستعمال الأرقام

$$E + S \longrightarrow ES \longrightarrow P + E$$
 $1+2 \longrightarrow 4 \longrightarrow 5+1$

التمرين 3

مفهوم الإنزيم: الإنزيم هو سيط عضوي ذو طبيعة بروتينية وتأثير نوعي يعمل على تسريع التفاعلات الكيميائية في شروط محددة، ولا يستهلك أثناء

يعمل الإنزيم غالبا على نوع واحد من ماد معقدا [إنزيم –

[ES تتكون خلالها روابط ضعيفة مع منطقة صغيرة من الإنزيم تعرف بالموقع الفعال والذي يكون شكله مكملا

()

يتأثر نشاط الإنزيم بتغيرات درجة الحرارة ودرجة الحموضة

حيث أنه لكل إنزيم درجة حرارة ودرجة حموضة مثلى يكون نشاط الإنزيم عندها أعظميا ، ويقل نشاطه بالابتعاد عن الدرجة المثلى